Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1,5-Dimethy-4-[(2-nitrobenzylidene)amino]-2-phenyl-1*H*-pyrazol-3(4*H*)-one

Zong-Xiao Li and Xin-Li Zhang*

Department of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China

Correspondence e-mail: lizongxiao1116@tom.com

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.040 wR factor = 0.087Data-to-parameter ratio = 9.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_{18}H_{16}N_4O_3$, has been synthesized by the reaction of 2-nitrobenzaldehyde and 4-aminoantipyrine. The molecule adopts an E configuration about the central C = N double bond.

Received 21 March 2006 Accepted 31 March 2006

Comment

The roles of antipyrine and antipyridine derivatives in biological processes have become a topic of study in recent years (Carlton *et al.*, 1995; Coolen *et al.*, 1999; Jiang *et al.*, 2000). The title compound, (I), is a new antipyrine Schiff base compound prepared in our laboratory. We present its structure here.

The molecular structure of (I) is shown in Fig. 1. The C10 \Longrightarrow N3 bond length (Table 1) shows the character of a Schiff base. The molecule adopts an E configuration about the central C10 \Longrightarrow N3 double bond. The pyrazole is nearly coplanar with the C11-containing benzene ring [dihedral angle = 14.51 (14)°], but is tilted with respect to the C1-containing benzene ring [dihedral angle = 54.69 (14)°].

Experimental

2-Nitrobenzaldehyde (0.1 mmol, 15.1 mg) and 4-aminoantipyrine (0.1 mmol, 20.3 mg) were dissolved in methanol (10 ml). The solution was stirred for 30 min at room temperature to give a clear yellow solution. Single crystals of (I) were obtained from the filtrate.

Crystal data

 $\begin{array}{lll} C_{18}H_{16}N_4O_3 & Z=4 \\ M_r=336.35 & D_x=1.357 \ \mathrm{Mg \ m^{-3}} \\ \mathrm{Orthorhombic}, P2_12_12_1 & \mathrm{Mo} \ K\alpha \ \mathrm{radiation} \\ a=6.886 \ (1) \ \mathring{\mathrm{A}} & \mu=0.10 \ \mathrm{mm^{-1}} \\ b=13.382 \ (1) \ \mathring{\mathrm{A}} & T=298 \ (2) \ \mathrm{K} \\ c=17.872 \ (2) \ \mathring{\mathrm{A}} & \mathrm{Rod, yellow} \\ V=1646.9 \ (3) \ \mathring{\mathrm{A}}^3 & 0.58 \times 0.26 \times 0.22 \ \mathrm{mm} \end{array}$

Data collection

Siemens P4 diffractometer $R_{\rm int} = 0.016$ ω scans $\theta_{\rm max} = 27.7^{\circ}$ Absorption correction: none 3 standard reflections 2211 independent reflections intensity decay: 5.3% 1272 reflections with $I > 2\sigma(I)$

© 2006 International Union of Crystallography All rights reserved

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_{\rm o}^2) + (0.0404P)^2] \\ R[F^2 > 2\sigma(F^2)] = 0.040 & \mbox{where } P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ wR(F^2) = 0.087 & (\Delta/\sigma)_{\rm max} = 0.001 \\ S = 0.84 & \Delta\rho_{\rm max} = 0.15 \ \mbox{e Å}^{-3} \\ 2221 \ \mbox{reflections} & \Delta\rho_{\rm min} = -0.14 \ \mbox{e Å}^{-3} \\ 229 \ \mbox{parameters} & Extinction \ \mbox{correction: } SHELXL97 \\ \mbox{H-atom parameters constrained} & Extinction \ \mbox{coefficient: } 0.0229 \ \mbox{(18)} \\ \end{array}$

Table 1
Selected bond lengths (Å).

O1-C7	1.228 (3)	N2-C9	1.356 (3)
N1-N2	1.397 (3)	N2-C17	1.462 (3)
N1-C7	1.408 (3)	N3-C10	1.279 (3)
N1-C6	1.433 (3)		` '

Methyl H atoms were placed in calculated positions, with C-H = 0.96 Å, and the torsion angles refined to fit the electron density, with $U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm C}).$ Other H atoms were placed in calculated positions, with C-H = 0.93 Å, and refined in riding mode, with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C}).$ In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are sincerely thankful for the support of the research grant (No. 02js40) of the Phytochemistry Key Laboratory of Shaanxi province.

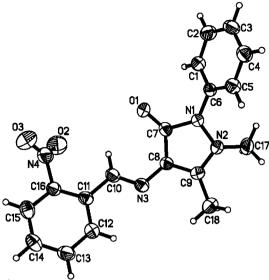


Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

References

Carlton, L. D., Schmith, V. D. & Brouwer, K. L. R. (1995). *Prostaglandins*, **50**, 341–347

Coolen, S. A. J., Everaerts, F. M. & Huf, F. A. (1999). J. Chromatogr. B, 732, 103–113.

Jiang, S. X., Bayón, J. E., Ferre, I., Mao, X. Z. & González-Gallego, J. (2000). Vet. Parasitol. 88, 177–186.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1995). XSCANS and SHELXTL (Version 5.0). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.